INTRODUCTION

Commonly known as robber flies or assassin flies, the Asilidae (Insecta: Diptera: Brachycera) form one of the largest families of Diptera, with more than 7,500 described species worldwide (Dikow 2020). Within the suborder Brachycera, they belong to the infraorder Muscomorpha and the superfamily Asiloidea, in which they are most closely related to Mydidae, Apioceridae and Therevidae (Dikow 2009). Because of their comparably large size and their conspicuous behavior as sit-and-wait predators, robber flies have caught the interest of many dipterists and naturalists. Asilids inhabit every continent except Antarctica and occupy diverse habitats (Hull 1962). Although they are most diverse in hot and dry environments with sandy soils, they can be found from tropical lowland forests up to alpine regions at 4,500m altitude (Hull 1962).

All robber fly larvae and adults are predatory on arthropods. Adults usually catch the prey in flight, except members of Leptogastrinae, who actively search and catch also substrate bound prey (Wolff et al. 2018). Because of their predatory behavior, a few authors have analyzed the potential ecosystem services provided by robber flies and hereby mainly focused on their ability to feed on arthropods harmful to forestry (Kinoshita 1940; Wichmann 1956). Wei et al. (1995) found significant effects of larvae of Promachus yesonicus Bigot, 1887 on wheat-feeding scarabaeid beetles. Furthermore, robber flies are interwoven into complex food webs and may help to stabilize them and they can serve as indicator species for different habitat qualities (Wolff et al. 2018).

In the present study we identified the Asilidae specimens from Japan present in the collections of the Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) in Bonn (Germany). Japan is formed by over 6,800 large to very small islands and extends in a 3,800 km long arch from the Sea of Okhotsk in the north to the East China Sea in the south (Embassy of Japan 2020). Therefore, it contains a wide variety of climates and a habitat diversity that is even enlarged by the strong altitudinal differences between the coastline and the mountainous regions. Our samples only cover a small part of the geographical range and are mainly taken from or nearby woodlands, which cover approximately 73% of the country (Embassy of Japan 2020). For Japan, Utsuki (2014) lists 104 species of robber flies, which are classified in 41 genera from 13 subfamilies.
ter understanding of the Japanese robber fly fauna. We provide high-quality images for at least one sex of every studied species to facilitate the identification of the taxa in future studies.

MATERIAL AND METHODS

Material

The material was collected in the last 30 years by Alexander Blanke and Bradley Sinclair. We examined all previously unidentified Japanese asilid specimens deposited in the ZFMK collections. A total of 334 specimens were examined. Out of these, 314 were collected by Alexander Blanke from 2014 to 2015, using Malaise traps. Trapping took place from 21 Jul. 2014 to 2 Sep. 2014, from 19 Apr. 2015 to 7 Jun. 2015, and from 26 Apr. 2016 to 3 May 2016. The traps were set at two locations in the property of the Sugadaira Research Station of the University of Tsukuba (Ueda, Nagano Prefecture) (see Table 1). The first site (B1) is located on a six-hectare semi-natural grassland with an Andosol soil that is managed by the research station by harvesting the grass once a year in autumn (SMRC 2020). The second site (B2) at the Sugadaire Research Station is located ca. 200 m from the first site in an approximately 50 years old succession forest that is dominated by red pine, Pinus densiflora Siebold & Zucc. and covers an area of 8.5 hectares (SMRC 2020). The Malaise traps operated with 96% ethanol. Collected specimens were preserved in 96% ethanol and subsequently dried with a critical point drier in order to be mounted on a pin.

The other 20 studied specimens were collected by Bradley Sinclair in the years 1997 and 1999. All but one stem from Kyushu Island, either from Fukuoka Prefecture or Kumamoto Prefecture (see Table 1). One specimen was collected on Okinawa. According to Sinclair, all specimens were collected with a sweep net at a stream or the nearby vegetation when he was collecting aquatic Empididae. Most of them were collected in forested areas. For a list of all locations see Table 1.

Terminology and literature

Terminology follows Cumming & Wood (2017) and the systematic classification of Asilidae follows Dikow (2009). Faunistic information is mainly taken from Utsuki (2014). Sampling localities are listed in Table 1. The literature used for species identification is listed under the respective species (see Results). Synonymy information and information on the type locality are mostly taken from Lehr (1988). Information on collections holding types were kindly provided by Fritz Geller-Grimm (unpublished, abbreviated as GG) or taken from Evenhuis & Pape (2020) (Sytema Dipterorum database at http://diptera.org/, abbreviated as SD).

Institutional abbreviations

BMNH = The Natural History Museum, London, UK
EIHU = Hokkaido University, Sapporo, Japan

Fig. 1. Distribution map of the sampling localities in Japan.
Table 1. List of sampling localities in Japan by Sinclair and Blanke (see Fig. 1).

<table>
<thead>
<tr>
<th>Area/State</th>
<th>City</th>
<th>Locality</th>
<th>Lat</th>
<th>Long</th>
<th>Ecology</th>
<th>Altitude</th>
<th>Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagano Prefecture</td>
<td>Ueda</td>
<td>Sugadaira Kogen, near SMRC</td>
<td>36.52389</td>
<td>138.34944</td>
<td>Grassland (B1)</td>
<td>1330 m</td>
<td>Blanke A.</td>
</tr>
<tr>
<td>Nagano Prefecture</td>
<td>Ueda</td>
<td>Sugadaira Kogen, near SMRC</td>
<td>36.52167</td>
<td>138.35083</td>
<td>Forest (B2)</td>
<td>1335 m</td>
<td>Blanke A.</td>
</tr>
<tr>
<td>Fukuoka Prefecture</td>
<td>Fukuoka</td>
<td>Chayama</td>
<td>33.56138</td>
<td>130.36638</td>
<td></td>
<td></td>
<td>Sinclair B.J.</td>
</tr>
<tr>
<td>Fukuoka Prefecture</td>
<td>Mount Sefuri</td>
<td>Beech</td>
<td>33.56138</td>
<td>130.36638</td>
<td></td>
<td>1000 m</td>
<td>Sinclair B.J.</td>
</tr>
<tr>
<td>Fukuoka Prefecture</td>
<td>Fukuoka</td>
<td>Nogochi</td>
<td>33.56138</td>
<td>130.36638</td>
<td>Forest</td>
<td>260 m</td>
<td>Sinclair B.J.</td>
</tr>
<tr>
<td>Kumamoto Prefecture</td>
<td>Itsuki-mura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sinclair B.J.</td>
</tr>
<tr>
<td>Kumamoto Prefecture</td>
<td>Mt Raizan, Maebaru-shi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500-600 m</td>
<td>Sinclair B.J.</td>
</tr>
<tr>
<td>Kumamoto Prefecture</td>
<td>Izumi-mura, Siibagoe</td>
<td></td>
<td></td>
<td></td>
<td>Hardwood forest</td>
<td>1250 m</td>
<td>Sinclair B.J.</td>
</tr>
<tr>
<td>Kumamoto Prefecture</td>
<td>Shiiba-goe</td>
<td></td>
<td></td>
<td></td>
<td>Hardwood forest</td>
<td>1250 m</td>
<td>Sinclair B.J.</td>
</tr>
<tr>
<td>Okinawa</td>
<td>Hiji Falls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sinclair B.J.</td>
</tr>
</tbody>
</table>

Technical equipment

Specimens were examined using a Nikon SMZ1500 stereo microscope. For photography we used a Canon EOS 7D® mounted on a P-51 Cam-Lift (Dun Inc., VA, USA), supported by Adobe Lightroom® ver. 5.6. Serial photographs were stacked using Zerene Stacker® ver. 1.04 software (Richland, WA, USA). Maps were created with Simple-Mappr (Shorthouse 2010).

RESULTS

We studied a total of 334 specimens, belonging to 20 species and one unnamed taxon (see Appendix 1). They represent 15 genera from eight subfamilies. The Malaise traps at Sugadaira-Kogen yielded 314 robber fly specimens belonging to 16 species. No robber fly was collected in 2016. The remaining 20 specimens of seven species were collected by Sinclair. Detailed information and unique identifiers are provided for each specimen in the Appendix 1. Under each species, we mention the locality, the date and the number of studied specimens between brackets (see New records).

The three species with the largest number of individuals were *Molobratia sapporensis* (Matsumura, 1916) (110), *Neoitamus angusticornis* (Loew, 1858) (68) and *Eutolmus koreanus* Hradský & Hüttinger, 1985 (25). All of these were collected in the Malaise traps at the Sugadaira Research Station, with the exception of four specimens of *Neoitamus angusticornis* that were collected by Bradley Sinclair. 103 specimens from 13 species were sampled in the forest site and 210 specimens of 13 species came from the grassland site. *Cyrtopogon pictipes* Coquillett, 1898, *Trichomachimus scutellaris* (Coquillett, 1898) and *Neoitamus ishiharai* Tagawa, 1981 were sampled exclusively from the forest site, while *Choerades* sp., *Philonicus nagatomi* Utsuki, 2008 and *Promachus yesonicus* Bigot, 1887 were sampled only in the grassland site.

All studied records (Fig. 1) lay inside the previously known distribution ranges of the taxa, except the record of *Stichopogon gracilifer* Nagatomi, 1983 from Itsuki-mura, which is a new distribution record for Kyushu.
fications and observations are discussed under each spe-
cies (see Remarks) if necessary.

Asilinae

Eutolmus Loew, 1848

Eutolmus brevistylus (Coquillett, 1898)

Fig. 2A–B

Mus. 21: 314 – Type locality: Japan – Type collection:
USNM [SD].

Eutolmus ussuriensis Engel, 1928. Fliegen pal. Reg.,
4 (2): 148 – Type-locality: “Kolowska am Ussuri”
(Russia, Far East) – Type collection: unknown.

References for identification. Young (2006), Tagawa
(2020).

New records. Nagano Pref., Ueda, Sugadaira Research
Station, grassland (B1): 29 Jun.–05 Jul. 2014 (1); Naga-
no Pref., Ueda, Sugadaira Research Station, forest (B2):
29 Jun.–5 Jul. 2014 (3); Nagano Pref., Ueda, Sugadaira
Research Station, grassland (B1): 5–19 Jul. 2014 (10);
Nagano Pref., Ueda, Sugadaira Research Station, grass-
land (B1): 19 Jul.–2 Aug. 2014 (7); Nagano Pref., Ueda,
Sugadaira Research Station, grassland (B1): 2–11 Aug.
2014 (2).

Distribution. Japan: Hokkaido, Honshu, Shikoku, Ky-
ushu; Russian Far East; China; Korean Peninsula.
New records of Japanese robber flies

Eutolmus koreanus Hradský & Hüttinger, 1985

Distribution. Japan: Honshu; Korean Peninsula.

Neoitamus Osten-Sacken, 1878

Neoitamus angusticornis (Loew, 1858)

Distribution. Japan: Honshu; Korean Peninsula.

Neoitamus castaneipennis Tagawa, 1981, male habitus.

Neoitamus castaneipennis Tagawa, 1981, male habitus.

Distribution. Japan: Hokkaido, Honshu, Shikoku, Kyushu; Russia: Sakhalin.

Neoitamus castaneipennis Tagawa, 1981

Figs 3C–D

New records of Japanese robber flies

Distribution. Japan: Honshu, Shikoku.

Neoitamus univittatus (Loew, 1871)

Fig. 4A–B

Itamus univittatus Loew, 1871. Syst. Besch. 9 Theil, 2 Band: 183 – Type locality: Russia: Irkutsk – Type collection: unknown.

Distribution. Japan: Honshu, Shikoku; Russia; Kazakhstan; Mongolia.

Neoitamus ishiharai Tagawa, 1981

Fig. 4C–D

Neoitamus ishiharai Tagawa, 1981. Trans. Shikoku Entomol. Soc. 15: 201 – Type locality: Japan: Tokushima Pref., Mt Tsurugi – Type collection: EUMJ.

Distribution. Japan: Honshu, Shikoku.

Philonicus Loew, 1849

Philonicus nagatomii Utsuki, 2008

Fig. 5A–B

Distribution. Japan: Hokkaido, Honshu, Shikoku, Kyushu.

Remarks. Utsuki (2008) described *P. nagatomii* as very similar to *Philonicus albiceps* (Meigen, 1820), except that it possesses a longer distiphallus. The distiphallus of our specimen matches the description of the one of *P. nagatomii*.

Promachus Loew, 1848

Promachus yesonicus Bigot, 1887

Fig. 6A–B

Promachus jesonicus: Paramonov (1931): 228, misspelling.

References for identification. Paramonov (1931), Young & Hradský (2008).

Distribution. Japan: Honshu, Shikoku, Kyushu.

Remarks. Utsuki (2008) described *P. nagatomii* as very similar to *Philonicus albiceps* (Meigen, 1820), except that it possesses a longer distiphallus. The distiphallus of our specimen matches the description of the one of *P. nagatomii*.

![Fig. 5. Philonicus nagatomii Utsuki, 2008, male habitus. A. Lateral view. B. Dorsal view. Scale bars = 2 mm.](image-url)
Trichomachimus Engel, 1934
Trichomachimus scutellaris (Coquillett, 1989)

Brachyrhopalinae

Cyrtopogon Loew, 1847
Cyrtopogon pictipennis Coquillett, 1898

Fig. 7A–B

New records of Japanese robber flies

Dasypogoninae

Molobratia Hull, 1958

Molobratia sapporensis (Matsumura, 1916)

Dioctriinae

Dioctria Meigen, 1803

Dioctria nakanensis Matsumura, 1916

Fig. 8A–B

References for identification. Lehr (2002), Tagawa (2020).

Distribution. Japan: Honshu, Shikoku, Kyushu; Taiwan.

Laphriinae

Choerades Walker, 1851

Choerades komucae (Matsumura, 1911)

Fig. 9A–B

Distribution. Japan: Hokkaido, Honshu, Shikoku, Kyushu; Russia: Kuril Island, Sakhalin.

Choerades sp.

Fig. 9C–D

Distribution. Tagawa (2020) records this unnamed taxon from Honshu and Shikoku.

Remarks. Our specimen belongs to the species named “Choerades sp.2” in Tagawa (2020). According to Tagawa (personal communication), this taxon is a new species that he plans to describe.

Laphria Meigen, 1806

Laphria rufa Röder, 1887

Fig. 10A–D

Distribution. Japan: Hokkaido, Honshu, Shikoku, Kyushu; Russia: Kuril Islands, Sakhalin; China.

Remarks. Species very similar to Laphria mitsukurii Coquillet, 1898. According to Young & Hradský (2007), L. rufa has yellow hairs on mesoscutum posterior to the scutellar suture, yellow hairs on tergites 1–3 and long mats of yellow hairs on tergites 4–6; whereas L. mitsukurii has black hairs posterior to the scutellar suture, black hairs on tergites 1–3 and long mats of orange hairs on tergites 5–6. Some of our specimens are somewhat intermediate in having yellow to orange hairs on the posterior mesoscutum but black hairs on tergites 1-3 and orange hairs on tergites 4–6 (compare Fig. 3A–B to Fig. 3C–D). Our identification as L. rufa is justified by the presence of yellowish hair on the posterior mesoscutum. Young & Hradský (2007) stated that “The two species (L. mitsukurii and L. rufa) are, in their numerous variations, externally different, but uncharacteristically for asilids, the males show almost identical features in the internal structures of the genitalia (gonopod, gonostylus, gonoxite)”. Hence, further investigations on the morphological and/or molecular separation of the two species seem necessary.

Maira Schiner 1866
Maira aterrima Hermann, 1914
Fig. 10E–F
New records of Japanese robber flies

Distribution. Japan: Kyushu, Ryukyu Islands; Taiwan; China.

Leptogastrinae

Leptogaster Meigen, 1803

Leptogaster humeralis (Hsia, 1949)

Fig. 11A–B

Ommatiinae

Cophinopoda Hull, 1958

Cophinopoda chinensis (Fabricius, 1794)

Ommatius fulvidus Wiedemann, 1821. Dipt. exot. [Ed.2] Pars I: 214 – Type-locality: Indonesia: Java – Type collection: ZMUC [SD].

Distribution. Japan: Honshu; India; Sri Lanka; China; Vietnam; Java; Sumatra.

Fig. 12. *Grypoctonus aino* Speiser, 1928. **A–B.** Male habitus. **A.** Lateral view. **B.** Dorsal view. **C–D.** Female habitus. Scale bars = 2 mm.
Remarks. According to Tsacas & Artigas (1994), C. chinensis and C. oldroydi have very similar female genitalia. Their key mentions the structure of sternite VIII to distinguish both. Our specimens clearly key to C. chinensis and lack the patch of black bristles on sternite III mentioned in the description of C. oldroydi and not mentioned in the redescription of the female holotype of C. chinensis. Tsacas & Artigas (1994) described C. oldroydi from Japan and recorded C. chinensis from the Asian mainland. However, according to Tagawa (2020) the separation of both species is doubtful.

Stenopogoninae

Grypoctonus Speiser, 1928
Grypoctonus aino Speiser, 1928
Fig. 12A–D

Remarks. Lehr (1988) listed G. aino as synonym of Grypoctonus hatakeyamae (Matsumura, 1916), but Hradský & Geller-Grimm (1999) studied the types of Speiser and concluded that G. aino is a valid species based on the wing venation and the morphology of the male genitalia.

Stichopogoninae

Stichopogon Loew, 1847
Stichopogon gracilifemur Nagatomi, 1983
Fig. 13A–B
Stichopogon gracilifemur Nagatomi, 1983. Kontyû 51: 476 – Type locality: Japan: Nagano Pref., Takato – Type collection: unknown [Nagatomi (1983) stated that the holotype was temporarily deposited at the Faculty of Agriculture, Kagoshima University, Kagoshima, Japan].

Remarks. These are the first distribution records of this species for Kyushu.

DISCUSSION

All reported species here were already listed for Japan by Utsuki (2014). Nevertheless, we provide the first published records of Stichopogon gracilifemur Nagatomi, 1983 from Kyushu. The majority of our studied material was collected by Malaise traps at the Sugadaira Research Station, where 16 species were collected. The relatively high species number despite the low spatial coverage is probably best explained by the high habitat diversity at Sugadaira-Kogen as well as the relatively high sampling effort (two years of Malaise trap sampling during the flight season, yielding 314 specimens). In contrast, the
material collected by hand-net has a greater spatial coverage (eight sites from Kyushu, one from Okinawa). The fact that no robber fly was sampled in 2016 is probably due to the timing. Firstly, the traps were set up only for eight days and, secondly, the traps were set quite early in the year.

At least since the work of Shōnen Matsumura in the early 20th century, asilidology is an established research field in Japan. Hence, the Japanese asilid fauna can be considered fairly well researched. Yet, there are still some challenges to overcome. Although there is detailed and illustrated literature for most species that occur in Japan, many publications are older than 40 years or focus on different geographical regions than Japan and a comprehensive key is only present for a handful of genera. We hope that our work, presenting high quality images and detailed information on synonymy, distribution and literature contributes to increase the accessibility of the Japanese Asilidae fauna for future studies.

Acknowledgements. The authors greatly thank Fritz Geller-Grimm for his generous support with his expertise and literature. Great thanks also go to Yuji Tagawa and Keita Kuroda for their valuable help with identification and readiness to answer all our questions on Japanese Asilidae. In addition, we thank Bradley Sinclair, Ryuichiro Machida and Alexander Blanke for collecting the material and providing us with information on collection sites. Furthermore, we thank Neha Singh for her technical support.

REFERENCES

Kinoshita E (1940) Untersuchungen über die Yeosuraubfliege Promachus yemenicus Bigot unter Berücksichtigung des Forstschutzes. Journal of the Faculty of Agriculture, Hokkaido Imperial University. 40: 171–270

Lehr PA (1961) Robber flies of the subfamily Leptogasterinae (Diptera, Asilidae) in the USSR. Entomological Review. 40: 378–387

Young CL (2006) Robber flies of South Korea II. South Korean species of the subfamily Asilinae La-
Young CL, Hradský MM (2008) Robber flies (Diptera: Asilidae) of South Korea. Parts VI–VIII. South Ko-
rean species of the Subfamilies Dasypogoninae, Di-

APPENDIX I

(electronic supplement, available at www.zoologicalbulletin.de)

Table S1. Systematic and identification data for the specimens studied in the present work.